NP-Hardness of Linear Multiplicative Programming and Related Problems

T. MATSUI
Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan (email: tomomi@misojiro.t.u-tokyo.ac.jp)

(Received: 18 December 1995; accepted: 29 December 1995)

Abstract

The linear multiplicative programming problem minimizes a product of two (positive) variables subject to linear inequality constraints. In this paper, we show NP-hardness of linear multiplicative programming problems and related problems.

Key words: NP-hard, minimization of products, linear multiplicative programming, linear fractional programming, multi-ratio programming.

1. Introduction

In this note, we consider the following problems:

(P1)	(P2)	(P3)
minimize	$x_{1} x_{2}$	minimize $x_{1}-1 / x_{2}$
maximize $1 / x_{1}+1 / x_{2}$		
subject to $A \boldsymbol{x} \leq \boldsymbol{b}$,	subject to $A \boldsymbol{x} \leq \boldsymbol{b}$,	subject to $A \boldsymbol{x} \leq \boldsymbol{b}$,

where $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is a d-dimensional real-valued vector and the feasible region $\Omega=\left\{\boldsymbol{x} \in \mathcal{R}^{d} \mid A \boldsymbol{x} \leq \boldsymbol{b}\right\}$ satisfies the condition that for any feasible vector $x^{\prime} \in \Omega, x_{1}^{\prime}, x_{2}^{\prime}>0$. Problem P1 is called a linear multiplicative programming problem. The above problems arise in many application settings, see the survey [8] and the forthcoming book [9]. For solving the above problems, there exist many algorithms [1,4-7,10,11,13-15]. In the recent paper [12], Pardalos and Vavasis asked the question whether linear multiplicative programming problems are polynomially solvable or not. The purpose of this paper is to show NP-hardness of Problems P1, P2 and P3.

In [12], Pardalos and Vavasis proved that the following quadratic concave optimization problem is NP-hard:
(P4) minimize $x_{1}-x_{2}^{2}$ subject to $A \boldsymbol{x}<\boldsymbol{b}$.

We will begin the next section by refining on the proof of NP-hardness of P4 described in [12].Our new proof offers the key to main results.

2. Preliminaries

As a beginning, we will examinc how to calculate the square of a number. Given a vector $\boldsymbol{x} \in[0,1]^{n}$ and a positive integer number p, the value $p x_{1}+p^{2} x_{2}+p^{3} x_{3}+$ $\cdots+p^{n} x_{n}$ is denoted by $[x]_{p}$. For any vector $\boldsymbol{x} \in[0,1]^{n}$, the square of $[\boldsymbol{x}]_{p}$ is obtained by the equation:

$$
\left([x]_{p}\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} x_{i} x_{j} .
$$

Now, we describe a method to approximate $\left([x]_{p}\right)^{2}$ by a linear inequality system. When $i \neq j$, we replace the term $x_{i} x_{j}$ by a variable $y_{i j}$ satisfying linear inequalities:

$$
\begin{equation*}
0 \leq y_{i j} \leq 1, \quad y_{i j} \leq x_{i}, \quad y_{i j} \leq x_{j}, \quad y_{i j} \geq x_{i}+x_{j}-1 \tag{1}
\end{equation*}
$$

For all i, we replace $x_{i} x_{i}$ by a variable $y_{i i}$ satisfying:

$$
\begin{equation*}
y_{i i}=x_{i} . \tag{2}
\end{equation*}
$$

By using y variables, the square of $[x]_{p}$ is approximated by:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j} .
$$

Linear inequalities (1) imply that if either x_{i} or x_{j} is $0-1$ valued, then $y_{i j}=$ $x_{i} x_{j}$. The equality (2) implies that $x_{i} \in[0,1]$ is $0-1$ valued if and only if $y_{i i}=$ $x_{i} x_{i}$. So, for any $0-1$ valued vector \boldsymbol{x}, the equality $\left([x]_{p}\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}$ holds. However, if a given vector $\boldsymbol{x} \in[0,1]^{n}$ is not $0-1$ valued, the equality does not hold in general. Now we consider the difference between $\left([\boldsymbol{x}]_{p}\right)^{2}$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}$, when x is not $0-1$ valued.

THEOREM 2.1. Let $\boldsymbol{x} \in \mathcal{R}^{n}$ and $\boldsymbol{y} \in \mathcal{R}^{n \times n}$ be a pair of vectors satisfying:

$$
\begin{array}{lc}
0 \leq x_{i} \leq 1 & (\text { for all } i), \\
0 \leq y_{i j} \leq 1 & (\text { for all } i, j), \\
y_{i j} \leq x_{i}, y_{i j} \leq x_{j}, y_{i j} \geq x_{i}+x_{j}-1 & (\text { for all } i, j \text { such that } i \neq j), \tag{3}\\
y_{i i}=x_{i} & \\
\text { (for all } i) .
\end{array}
$$

Assume that p is a positive integer, \boldsymbol{x} is not $0-1$ valued and there exists a positive value $0<\varepsilon<1 / 2$ satisfying that each element x_{i} is either $x_{i}=0,1$ or $\varepsilon<x_{i}<$ $1-\varepsilon$. Then the inequality $\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}-\left([x]_{p}\right)^{2}>p^{2} \varepsilon / 2-p n^{2}$ holds.

Proof. Let k be the largest index satisfying $0<x_{k}<1$. For any index $i>k, x_{i}$ is $0-1$ valued and so $y_{i j}=x_{i} x_{j}$ for all j. Then we have the following inequalities;

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}-\left([\boldsymbol{x}]_{p}\right)^{2}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{k} \sum_{j=1}^{k} p^{i+j} y_{i j}+\sum_{i=k+1}^{n} \sum_{j=1}^{k} p^{i+j} y_{i j} \\
& +\sum_{i=1}^{k} \sum_{j=k+1}^{n} p^{i+j} y_{i j}+\sum_{i=k+1}^{n} \sum_{j=k+1}^{n} p^{i+j} y_{i j}-\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} x_{i} x_{j} \\
= & \sum_{i=1}^{k} \sum_{j=1}^{k} p^{i+j} y_{i j}+\sum_{i=k+1}^{n} \sum_{j=1}^{k} p^{i+j} x_{i} x_{j} \\
& +\sum_{i=1}^{k} \sum_{j=k+1}^{n} p^{i+j} x_{i} x_{j}+\sum_{i=k+1}^{n} \sum_{j=k+1}^{n} p^{i+j} x_{i} x_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} x_{i} x_{j} \\
= & \sum_{i=1}^{k} \sum_{j=1}^{k} p^{i+j} y_{i j}-\sum_{i=1}^{k} \sum_{j=1}^{k} p^{i+j} x_{i} x_{j} \\
\geq & p^{2 k} y_{k k}-\left(p^{2 k}\left(x_{k}\right)^{2}+p^{2 k-1}\left(k^{2}-1\right)\right) \\
= & p^{2 k}\left(x_{k}-\left(x_{k}\right)^{2}\right)-p^{2 k-1}\left(k^{2}-1\right) \\
> & p^{2}\left(x_{k}-\left(x_{k}\right)^{2}\right)-p n^{2} \geq p^{2} \varepsilon / 2-p n^{2} .
\end{aligned}
$$

The above theorem says that when p is sufficiently large, the vector $\boldsymbol{x} \in[0,1]^{n}$ is $0-1$ valued if and only if $\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}-\left([x]_{p}\right)^{2}$ is non-positive. This result gives an idea to show NP-hardness of Problem P4. To show NP-hardness of Problem P4, we have to transform an NP-complete problem to the decision version of P4. Here we use the following NP-complete problem.

SET PARTITION [2, 3]

INSTANCE : An $m \times n 0-1$ matrix M satisfying $n>m$.
QUESTION : Is there a $0-1$ vector \boldsymbol{x} satisfying $M \boldsymbol{x}=\mathbf{1}$? (Here, $\mathbf{1}$ denotes the all one vector.)

Then, it is natural to consider the following problem:

$$
\begin{aligned}
& (\mathrm{P} 4(M)) \text { minimize } \sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}-\left(\sum_{i=1}^{n} p^{i} x_{i}\right)^{2} \\
& \text { subject to (} 3 \text {) and } M \boldsymbol{x}=\mathbf{1},
\end{aligned}
$$

where M is an $m \times n 0-1$ matrix with $n>m$. Clearly, when the equality system $M \boldsymbol{x}=1$ has a $0-1$ valued solution, the optimal value of the above problem is less than or equal to zero. We will discuss the case that $M \boldsymbol{x}=\mathbf{1}$ does not have any $0-1$ valued solution. The feasible region of Problem $\mathrm{P} 4(M)$, denoted by $\Omega(M)$, is a bounded polytope. The number of constraints of Problem $\mathrm{P} 4(M)$ is equal to $n+n^{2}+4\left(n^{2}-n\right)+n+m$ and so the number of constraints is less than n^{3}, when $n \geq 5$. Let $\left(x^{\prime}, y^{\prime}\right)$ be a vertex of the polytope $\Omega(M)$. Since each coefficient of constraints is $-1,0$ or 1 , Cramer's rule implies that each element of $\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ is
$0-1$ valued or contained in the interval $\left[1 /\left(n^{3}\right)^{n^{3}}, 1-1 /\left(n^{3}\right)^{n^{3}}\right]$. This observation implies the following property.

THEOREM 2.2. Let M be an $m \times n 0-1$ matrix with $n>m$ and $n \geq 5$. Assume that $p=n^{n^{4}}$. The equality system $M x=1$ has $a 0-1$ valued solution if and only if the optimal value of Problem $P 4(M)$ is non-positive. When $M x=1$ does not have any $0-1$ valued solution, the optimal value of $P 4(M)$ is greater than p.

Proof. If $M x=1$ has a $0-1$ valued solution, it is clear that the optimal value of Problem $\mathrm{P} 4(M)$ is non-positive.

We consider the case that $M \boldsymbol{x}=\mathbf{1}$ does not have any $0-1$ valued solution. For any vertex $\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ of the polytope $\Omega(M)$, each element of $\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ is $0-1$ valued or contained in the interval $\left[1 /\left(n^{3}\right)^{n^{3}}, 1-1 /\left(n^{3}\right)^{n^{3}}\right]$. Since $M \boldsymbol{x}=1$ does not have any $0-1$ valued solution, \boldsymbol{x}^{\prime} is not $0-1$ valued. Lemma 2.1 implies that:
$\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}^{\prime}-\left(\sum_{i=1}^{n} p^{i} x_{i}^{\prime}\right)^{2}>p^{2} /\left(2\left(n^{3}\right)^{n^{3}}\right)-p n^{2}=p\left(n^{n^{4}} /\left(2 n^{3 n^{3}}\right)-n^{2}\right)>p$.
For any feasible solution $(\boldsymbol{x}, \boldsymbol{y})$ of $\mathrm{P} 4(M),(\boldsymbol{x}, \boldsymbol{y})$ is represented by a convex combination of vertices of $\Omega(M)$. Since the objective function of $\mathrm{P} 4(M)$ is concave, every feasible solution $(\boldsymbol{x}, \boldsymbol{y})$ satisfy the inequality $\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}-\left(\sum_{i=1}^{n} p^{i} x_{i}\right)^{2}>$ p.

From the above, we can decide the answer to SET PARTITION by solving Problem $\mathrm{P} 4(M)$. The input size of the largest coefficient appearing in $\mathrm{P} 4(M)$ is $\left\lceil\log \left(p^{2 n}\right)\right\rceil+$ $1-\left\lceil\log \left(n^{n^{4}}\right)^{2 n}\right\rceil+1=\left\lceil 2 n^{5} \log n\right\rceil+1$, and so the input size of Problem $\mathrm{P} 4(M)$ is bounded by a polynomial of n. It implies that Problem P4 is NP-hard.

We can extend the above result to a more general global optimization problem.

COROLLARY 2.3. Let n be a positive integer with $n \geq 5$ and we use p for $n^{n^{4}}$. Assume that $g\left(x_{0}, y_{0}\right)$ is a function satisfying the conditions that:
(1) $\forall x_{0} \in\left[0, n p^{n}\right], \forall y_{0} \in\left[0, n^{2} p^{2 n}\right]$, if $y_{0}-x_{0}^{2} \leq 0$ then $g\left(x_{0}, y_{0}\right) \leq 0$,
(2) $\forall x_{0} \in\left[0, n p^{n}\right], \forall y_{0} \in\left[0, n^{2} p^{2 n}\right]$, if $y_{0}-x_{0}^{2}>p$ then $g\left(x_{0}, y_{0}\right)>0$.

Given an $m \times n 0-1$ matrix M with $n>m$ and $n \geq 5$, we define the problem:

$$
\begin{aligned}
(P g(M)) \text { minimize } & g\left(x_{0}, y_{0}\right) \\
\text { subject to } & (3) \text { and } M \boldsymbol{x}=\mathbf{1}, \\
& x_{0}=\sum_{i=1}^{n} p^{i} x_{i}, \\
& y_{0}=\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j} .
\end{aligned}
$$

Then, the optimal value of $\operatorname{Pg}(M)$ is non-positive if and only if the equality system $M \boldsymbol{x}=1$ has a $0-1$ valued solution.

3. Main Results

First, we show NP-hardness of Problem P1. We consider the special function:

$$
\begin{aligned}
g_{1}\left(x_{0}, y_{0}\right) & =\left(y_{0}-p+2 p^{4 n}\right)^{2}-4 p^{4 n} x_{0}^{2}-4 p^{8 n} \\
& =\left(y_{0}-p+2 p^{4 n}+2 p^{2 n} x_{0}\right)\left(y_{0}-p+2 p^{4 n}-2 p^{2 n} x_{0}\right)-4 p^{8 n}
\end{aligned}
$$

where $p=n^{n^{4}}$ and $n \geq 5$. We can show that $g_{1}\left(x_{0}, y_{0}\right)$ satisfies the conditions in Corollary 2.3 as follows.
(1) If (x_{0}, y_{0}) satisfies $x_{0} \in\left[0, n p^{n}\right], y_{0} \geq 0$ and $y_{0}-x_{0}^{2} \leq 0$, then

$$
\begin{aligned}
g_{1}\left(x_{0}, y_{0}\right) & \leq\left(y_{0}-p\right)^{2}+2\left(y_{0}-p\right) 2 p^{4 n}+4 p^{8 n}-4 p^{4 n} y_{0}-4 p^{8 n} \\
& \leq\left(y_{0}-p\right)^{2}-4 p^{4 n+1} \leq\left(y_{0}\right)^{2}+p^{2}-4 p^{4 n+1} \\
& \leq\left(x_{0}\right)^{4}+p^{2}-4 p^{4 n+1} \leq n^{4} p^{4 n}+p^{2}-4 p^{4 n+1} \leq 0 .
\end{aligned}
$$

(2) If (x_{0}, y_{0}) satisfies $y_{0}-x_{0}^{2}>p$ and $y_{0} \geq 0$, then

$$
g_{1}\left(x_{0}, y_{0}\right)>\left(x_{0}^{2}+2 p^{4 n}\right)^{2}-4 p^{4 n} x_{0}^{2}-4 p^{8 n}=x_{0}^{4} \geq 0
$$

From the above, we can show NP-hardness of the problem:
(P1 (M)) minimize $z_{1} z_{2}$
subject to (3) and $M x=1$,
$x_{0}=\sum_{i=1}^{n} p^{i} x_{i}$,
$y_{0}=\sum_{i=1}^{n} \sum_{j=1}^{n} p^{i+j} y_{i j}$,
$z_{1}=\left(y_{0}-p+2 p^{4 n}+2 p^{2 n} x_{0}\right)$,
$z_{2}=\left(y_{0}-p+2 p^{4 n}-2 p^{2 n} x_{0}\right)$.
Corollary 2.3 implies that the optimal value of $\operatorname{Problem} \mathrm{Pl}(M)$ is less than or equal to $4 p^{8 n}$ if and only if $M \boldsymbol{x}=\mathbf{1}$ has a $0-1$ valued solution. So, we have shown the following theorem.

THEOREM 3.1. Problem Pl is $N P$-hard.

Proof. When we solve Problem $\mathrm{P} 1(M)$, we can decide the answer to SET PARTITION. The largest coefficient appearing in $\mathrm{P}(M)$ is $2 p^{4 n}=2\left(r^{n^{4}}\right)^{4 n}=$ $2 n^{4 n^{5}}$ and the threshold value is $4 p^{8 n}=4\left(n^{n^{4}}\right)^{8 n}=4 n^{8 n^{5}}$. Thus, the input size of Problem $\operatorname{P1}(M)$ and the input size of the threshold value are bounded by a polynomial of n. Clearly, $\operatorname{Problem} \mathrm{P} 1(M)$ is a special case of P 1 and so we have the desired result.

Here we note that for any feasible solution of $\mathrm{P} 1(M)$, both $z_{1}>0$ and $z_{2}>0$ hold. Since p is large enough, $z_{1}>0$ is clear. For the variable z_{2},

$$
z_{2} \geq-p+2 p^{4 n}-2 p^{2 n} n p^{n}=-p+2 p^{4 n}-2 n p^{3 n}
$$

and assumptions $n \geq 5$ and $p=n^{n^{4}}$ imply the property $z_{2}>0$.

Next, we consider Problem P2. Given three positive values z_{1}, z_{2} and $a, z_{1} z_{2} \leq$ a^{2} if and only if $z_{1}-a^{2} / z_{2} \leq 0$. So, we decide the answer to SET PARTITION by solving the problem:

$$
\begin{aligned}
&(\mathrm{P} 2(M)) \text { minimize } \\
& \text { subject to constraints of Problem } \mathrm{P} 1(M) \\
& z_{3}=z_{2} /\left(4 p^{8 n}\right)
\end{aligned}
$$

It is clear that the optimal value of $\mathrm{P} 2(M)$ is non-positive if and only if the equality system $M \boldsymbol{x}=\mathbf{1}$ has a $0-1$ valued solution. So, we have shown the following theorem.

THEOREM 3.2. Problem P2 is $N P$-hard.
Lastly, we consider ProblemP3. Given three positive values z_{1}, z_{2} and $a, z_{1} z_{2} \leq a^{2}$ if and only if $1 /\left(z_{1}+a\right)+1 /\left(z_{2}+a\right) \geq 1 / a$. Thus, we can decide the answer to SET PARTITION by solving the problem:

$$
\begin{aligned}
(\mathrm{P} 3(M)) \text { maximize } & 1 / z_{4}+1 / z_{5} \\
\text { subject to } & \text { constraints of Problem } \mathrm{P} 1(M), \\
& z_{4}=z_{1}+2 p^{4 n} \\
& z_{5}=z_{2}+2 p^{4 n}
\end{aligned}
$$

Clearly, the optimal value of $\mathrm{P} 3(M)$ is greater than or equal to $1 / 2 p^{4 n}$ if and only if the equality system $M \boldsymbol{x}=1$ has a $0-1$ valued solution. So, we obtained the following.

THEOREM 3.3. Problem P3 is NP-hard.

References

1. Aneja, Y.P., Aggarwal, V. and Nair, K.P.K. (1984), 'On a class of quadratic programs', European Journal of Operational Research 18, 62-70.
2. Garey, M.R. and Johnson, D.S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman.
3. Karp, R.M. (1972), Reducibility among combinatorial problems. in Complexity of Computer Computations (R.E. Miller and J.W.Thatcher eds.), Plenum Press.
4. Konno, H. and Kuno, T. (1990), Generalized linear multiplicative and fractional programming, Annals of Operations Research 25, 147-162.
5. Konno, H., Yajima, Y. and Matsui, T. (1991), Parametric simplex algorithms for solving a special class of nonconvex minimization problems, Journal of Global Optimization 1, 65-82.
6. Konno, H. and Kuno, T. (1992), Linear multiplicative programming, Mathematical Programming 56, 51-64.
7. Konno, H., Kuno T. and Yajima, Y. (1992), Parametric simplex algorithms for a class of NP complete problems whose average number of steps are polynomial, Computational Optimization and Applications 1, 227-239.
8. Konno, H. and Kuno, T. (1995), Multiplicative programming problems, in Handbook of Global Optimization (R. Horst and P.M. Pardalos eds.), Kluwer Academic Publishers.
9. Konno, H., Thach, P.T. and Tuy, H. Global Optimization: Low Rank Nonconvex Structures, Kluwer Academic Publishers (to appear).
10. Kuno, T. and Konno, H. (1991), A parametric successive underestimation method for convex multiplicative programming problems, Journal of Global Optimization 1, 267-285.
11. Pardalos, P.M. (1990), Polynomial time algorithms for some classes of constrained nonconvex quadratic problems, Optimization 21, 843-853.
12. Pardalos, P.M. and Vavasis, S.A. (1991), Quadratic programming with one negative eigen-value is NP-hard, Journal of Global Optimization 1, 15-22.
13. Swarup, K. (1966), Indefinite quadratic programming, Cahiers du Centre d'Etudes de Recherche Operationnelle 8, 217-222.
14. Thoai, N.V. (1991), A global optimization approach for solving the convex multiplicative programming problem, Journal of Global Optimization 1, 341-357.
15. Tuy, H. and Tam, B.T. (1992), An efficient solution method for rank two quasiconcave minimization problems, Optimization 24, 43-56.
